

Адаптация алгоритма детектирования пожаров MOD14 для работы с данными МСУ-МР

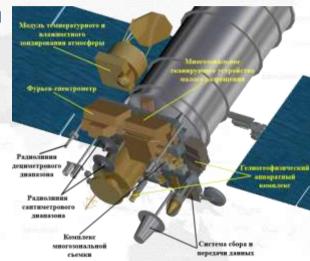
Лозин Д.В., Матвеев А.М., Кашницкий А.В., Лупян Е.А.

Институт Космических Исследований РАН

Актуальность проблемы и основная задача

- Детектирование пожаров по данным спутников ДЗЗ технология, обеспечивающая возможность круглосуточного дистанционного мониторинга пожаров и оперативного автоматизированного контроля лесопожарной обстановки на всей территории России.
- Одним из наиболее устойчивых и надежных алгоритмов детектирования пожаров по спутниковым данным является алгоритм MOD14, рассчитанный на работу с данными прибора MODIS, установленного на спутниках TERRA и AQUA.
- Большой **интерес** представляет исследование возможностей детектирования пожаров **по данным с приборов**, для которых еще **не было разработано подобных алгоритмов**.

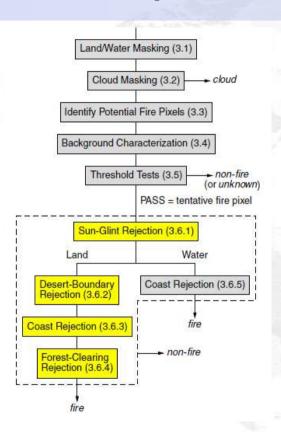
Лесной пожар в сибирской тайге



Задача

Разработка методов детектирования пожаров по данным с прибора **МСУ-МР**, установленном на отечественном метеорологическом спутнике **Метеор-М №2-2**

Решение:


Использование модифицированного MOD14 для работы с данными MCУ-MP

Основная целевая аппаратура космического аппарата «Метеор-М» №2-2

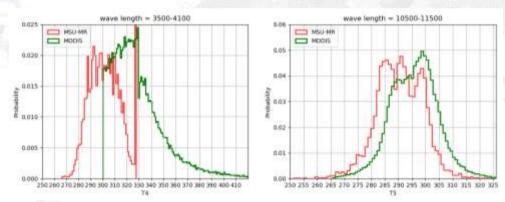
Схема реализации **MOD14**

Секции MOD14, адаптируемые для МСУ-MP:

- Маскирование воды
- Маскирование облачности
- Идентифицированные потенциальных хотспотов
- Характеристика фона
- Тестовая секция
- Фильтрация горячих поверхностей

Построение обучающей выборки

- Положительная выборка составлялась из наборов параметров, рассчитанных по данным МСУ-МР в точках, где был зарегистрирован пожар
- Для локализации пожаров на снимках МСУ-МР использовалась информация о горячих точках, детектированных по данным MODIS на территории РФ за 2021 год
- Каждой такой точке подбирался покрывающий ее сеанс МСУ-МР. Время такого сеанса отличалось от времени регистрации точки не более, чем на 30 минут
- Объём итоговой положительной выборки составил 13351 наборов
- Отрицательная выборка строилась по наборам сеансов МСУ-МР, покрывающих области, на которых не было зарегистрировано горячих точек MODIS в день этого сеанса
- Объём отрицательной выборки составил 451848 наборов


Параметр	Краткое описание		
R_2	Коэффициент отражения в канале 2 (700-1100 нм)		
T ₄	Яркостная температура в канале 4 (3500-4100 нм)		
T ₅	Яркостная температура в канале 5 (10500-11500 нм)		
dT	$T_4 - T_5$		
T _{4_} mean,T _{5_} mean, dT_mean	Средние значения фона вокруг горячей точки		
T ₄ _mad, T ₅ _mad, dT_mad	Абсолютное среднее отклонение фона		
Bkg_fire_mad	Статистика по высокотемпературной части фона		

Описание параметров горячих точек выборки

Модифицированный MOD14

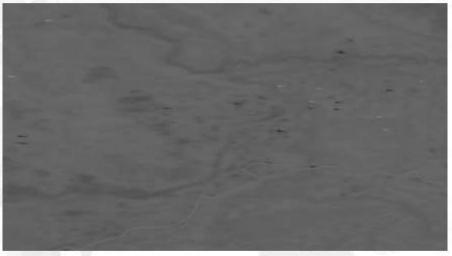
- Основная часть алгоритма MOD14 вычисление тестовых выражений, использующих параметры из наборов для каждой точки сцены, и сравнение данных параметров с пороговыми значениями
- Модификация алгоритма MOD14 изменение коэффициентов тестовых выражений и пороговых значений таким образом, чтобы алгоритм срабатывал положительно на обучающей выборке горячих точек и отрицательно на выборке точек, не являющимися горячими.
- Для этого был проведен **анализ распределений яркостных температур** горячих точек в каналах со схожим спектральным диапазоном **МСУ-МР (4 и 5 каналы)** и **MODIS (21 и 31 каналы)**

Распределения яркостных температур горячих точек по данным МСУ-МР и MODIS.

Слева: канал 4 МСУ-МР (3500-4100 нм) и канал 21 MODIS (3929-3989 нм) (значение по вертикальной оси красной линии в точке 327 по горизонтальной оси достигает 0.28)

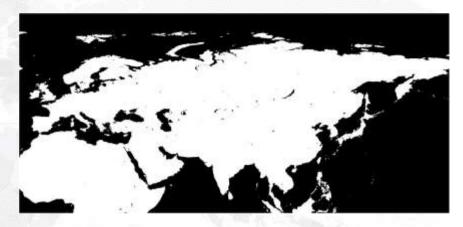
Справа: канал 5 МСУ-МР (10500-11500 нм) и канал 31 MODIS (10780-11280 нм)

Географическая допривязка сеансов



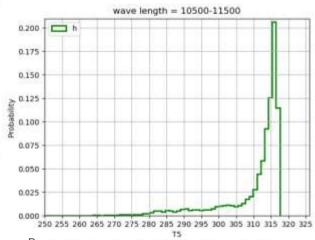
Пример работы алгоритма допривязки сцены МСУ-МР по береговой линии

Фильтрация сеансов со сбоями



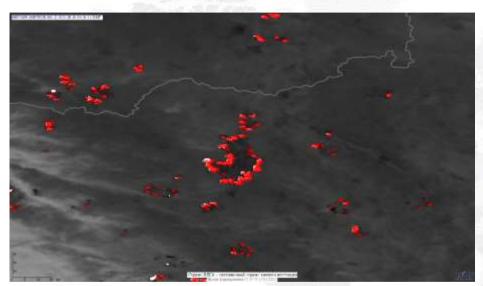
- Слева: область сцены, снятой спутником МСУ-МР (04.08.2022 12:13:54). На сцене видны сбойные полосы
- Справа: область сцены, снятой спутником МСУ-МР (01.08.2022 22:10:02). На сцене единичные помехи

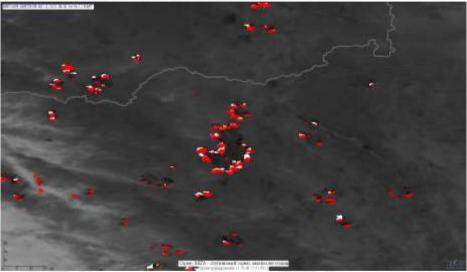
Маскирование воды



- Слева: маска воды по данным MODIS
- **Справа**: загрубленная маска воды для предотвращения ошибки фильтрации из-за разной привязки данных MODIS и MCУ-MP

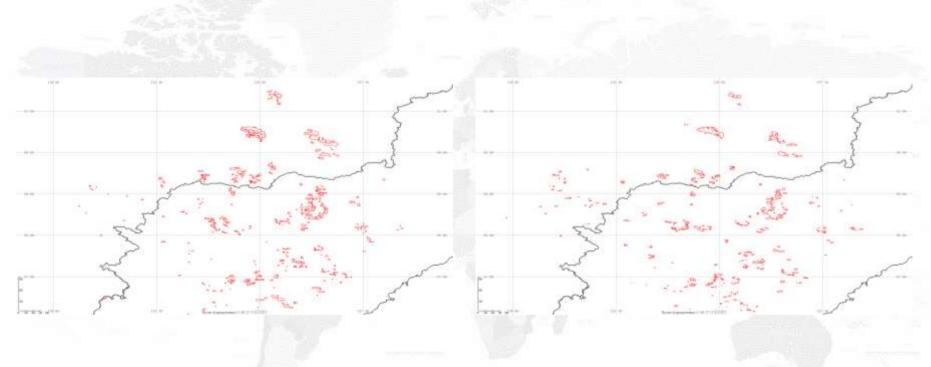
Фильтрация горячих поверхностей




Распределение яркостных температур на горячих поверхностях по данным МСУ-МР в 5 канале

Работа фильтров на выборках ложных детектирований на горячих поверхностях и выборке горячих точек									
		Всего	T4=327	T5>310	T5>310 T4=327	R2>0.15	R2>0.15 T5>310 T4=327		
	ЛД на горячей пов-сти	164072	137820	120846	115267	159790	149404		
	Горячие точки из выборки		4603	116	84	6201	53		

Результаты



- Слева: пример работы модифицированного алгоритма MOD14 на рассматриваемой области сцены , снятой спутником MCУ-MP (01.08.2022 04:56:12). Красным выделен результат работы алгоритма
- **Справа:** пример работы алгоритма MOD14 на данных MODIS за 1 августа. Красным выделен результат работы алгоритма

Результаты

Сравнение контуров пожаров, сформированных на основе результатов работы модифицированного алгоритма MOD14 на данных MCУ-MP (слева) и на основе работы MOD14 на данных MODIS (справа) с 1 по 10 авгутса

Результаты

Сравнение работы детектирования горячих точек по данным MODIS и MCУ-MP на областях с общей географической областью зарегистрированных горячих точек 1 -10 августа 2022 Кол-во сеансов MODIS покрывших орячих точек Количество орячих точек сеансов МСУсеанс МСУ-МР за MODIS в кольце MODIS B МР с обшей данный радиуса 1 орячих точек кольце радиуса Несопоставл Несопоставл Всего областью MODIS совпало с вокруг точек 2 вокруг точек промежуток енных точек енных точек точек Всего точек Дата/время одного из сеансов МСУ-МР точками МСУ-МР МСУ-МР МСУ-МР МСУ-МР МСУ-МР **MODIS** интереса времени MODIS 01.08.2022 3:18:59 02.08.2022 2:57:29 03.08.2022 9:14:57 01.08.2022 10:03:21 03.08.2022 5:50:45 04.08.2022 7:12:40 05.08.2022 0:21:10 06.08.2022 8:05:55 06.08.2022 3:05:18 07.08.2022 7:43:16 08.08.2022 9:00:10 08.08.2022 3:56:58 09.08.2022 10:20:26 09.08.2022 3:34:55 10.08.2022 3:13:08 10.08.2022 0:06:28 Всего сопоставленных MODIS:

		Лесная площадь пожаров (га)	Лесная площадь пожаров без коррекции (га)			
МСУ-МР	517					
MODIS	639	540 335	906 434			

Выводы

- Данные, получаемые с прибора МСУ-МР, могут быть использованы для детектирования пожаров
- Данные требуют дополнительной обработки (фильтрация помех и географическая допривязка), которая была реализована в рамках адаптации MOD14
- Предложенный метод детектирования показывает хороший результат на изучаемом отрезке времени (с 1 по 10 августа 2022)
- Для устойчивой и надежной работы методов детектирования на всех сценах МСУ-МР необходимо:
 - Проверить работу алгоритма за больший промежуток времени
 - Уточнить алгоритм с помощью дополнения отрицательных и положительных выборок
 - Дополнительно настроить работу алгоритмов для детектирования пожаров на сеансах с терминатором

Спасибо за внимание!

http://smiswww.iki.rssi.ru

Лозин Дмитрий Владиславович lozin@d902.iki.rssi.ru

Отдел «Технологий спутникового Мониторинга»

